

Fraunhofer-Institut für Werkstoffmechanik IWM

Mean-Field simulation of microstructure evolution during forging using FORGE® and DynamiX GUI

Lukas Kertsch, Maxim Zapara, Dirk Helm Fraunhofer IWM, Freiburg, Germany

Transvalor International Simulation Days Mandelieu-la-Napoule, 1st October 2024

Motivation and objectives

- Material characterization
- Material modelling
- Forging simulation
- Microstructure simulation
- Summary and outlook

EU Horizon Project AID4GREENEST

AI powered characterization and modelling for green steel technology

AID4GREENEST (GA 101091912)

- Call: HORIZON-CL4-2022-RESILIENCE-01
- **Topic**: HORIZON-CL4-2022-RESILIENCE-01-19 Advanced materials modelling and characterisation (Research and Innovation Action)
- Start date: 01.09.2023 End date: 31.08.2026
- **Total budget**: € 4,946,876.25
- Consortium: 10 partners from 4 countries
 3 companies + 3 universities + 2 research
 organizations + 1 standardization body
 + 1 consulting company

EU Horizon Project AID4GREENEST

AI powered characterization and modelling for green steel technology

EU Horizon Project AID4GREENEST

AI powered characterization and modelling for green steel technology

R6. A model-enabled method for accelerated creep testing

Motivation and objectives

Material phenomena in thermo-mechanical processing of metallic materials

Viscoplasticity Thermo-elasticity

Recovery, Recrystallization

+ Energy storage/release

+ Energetic coupling phenomena

[2]

Grain coarsening Precipitation

Phase transformation

[1] https://www.metal-i-cast.com/images/forging/forging-img-6.jpg
[2] https://www.manufacturingguide.com/en/hot-rolling-sheets
[3] https://dirostahl.com/portfolio/fertigung/waermebehandlung
[4] https://www.hawcoindia.com/manufacturer-supplier-polymer-quenching-oils.php

- Motivation and objectives
- Material characterization
- Material modelling
- Forging simulation
- Microstructure simulation
- Summary and outlook

Material characterization Methods

Creep-resistant steel 30CrMoNiV5-11

	С	Si	Mn	Cr	Мо	Ni	V	Cu	S	Р
wt.%	0.28	0.10	0.65	1.37	1.08	0.63	0.29	0.10	0.01	0.009

• Thermo-mechanical testing (Gleeble 3150)

Variables

- Deformation temperature
- Strain rate
- Total strain
- Holding time

Results

- Flow curves
- Deformed/DRX/PDRX microstructures

Metallography

Material characterization

900 °C

+ 0 s, + 30 s

Thermo-mechanical testing

250

200

Stress(MPa) 100

50

Flow curves

 $1.0 \ s^{-1}$

 $0.1 \ s^{-1}$

 $0.01 \ s^{-1}$

1100 °C

250

200

Stress(MPa) 001 002

50

Page 9 01/10/2024 © Fraunhofer IWM

250

200

Stress(MPa) 001 001

50

1000 °C

 $1.0 \ {\rm s}^{-1}$

 $0.1 \ s^{-1}$

 $0.01 \ s^{-1}$

+ 0 s, + 20 s

Metallography after various process histories **X** to reveal deformed and recrystallized microstructures

1.0 s⁻¹ 0.1 s⁻¹

load cell limit

reached

Material characterization

Metallography

Etched to reveal the prior austenite grain boundaries

Fraunhofer

IWM

Material characterization

Metallography

- Motivation and objectives
- Material characterization
- Material modelling
- Forging simulation
- Microstructure simulation
- Summary and outlook

Loads at a material point Deformation \mathbf{F} , temperature T

• elastic-plastic split $\mathbf{F} = \mathbf{F}_{e}\mathbf{F}_{p}$

Mean-field approach

- N grains with equivalent radii $R_1, \dots R_N$ and hardening variables $q_1^1, q_1^2, \dots, q_N^1, q_N^2$
- M precipitate particles with equivalent radii r_1, \dots, r_M

Thermodynamic framework

- Thermodynamic potential: Free energy $\psi = \psi_{\rm e} + \psi_{\rm p} + \psi_{\rm chem} + \psi_{\rm gb} + \psi_{\rm pb}$
- Conservation of energy, momentum, mass + 2. law
- Model equations

1) L. Kertsch: Modellierung des thermomechanischen Materialverhaltens und der Gefügeentwicklung mikrolegierter Stähle.

- Evolution equations: plasticity, work hardening, grain and precipitate sizes, nucleation
- Microstructure-property-relations: flow stress, grain boundary mobility, diffusivity, ... as functions of microstructure and temperature

IWM

💹 Fraunhofer

01/10/2024 © Fraunhofer IWM Page 13

Material modelling

General structure of the mean-field model^{1,2} developed at Fraunhofer IWM

Funded by the Fu

- Motivation and objectives
- Material characterization
- Material modelling
- Forging simulation
- Microstructure simulation
- Summary and outlook

Forging simulation

Process overview

• Simulation of the entire forging process with FORGE[®] NxT 4

- Results: strain and temperature field within the workpiece as functions of time
- Needed to predict the microstructure evolution during forging

Forging simulation

Preliminary results for the 1st reheat

Upsetting 1st cogging 1200 °C 1100 °C 1000 °C 900 °C 800 °C 700 °C

- Motivation and objectives
- Material characterization
- Material modelling
- Forging simulation
- Microstructure simulation
- Summary and outlook

Microstructure simulation

Working with DynamiX GUI

- Motivation and objectives
- Material characterization
- Material modelling
- Forging simulation
- Microstructure simulation
- Summary and outlook

Summary and outlook

Summary

- Simulation of the multi-stage open-die forging process of a large turbine shaft
- Experimental characterization of the used steel
- Calibration of a physics-based model for the thermo-mechanical material behavior and microstructure evolution
- Prediction of microstructure evolution using DynamiX GUI

Outlook

- Integration into the toolchain within the AID4GREENEST project:
 - Prediction of phase transformation and microstructure evolution during quenching
 - Correlation of final microstructure and creep life during service
- Contribution to product, process, and material design
- Reduction of time, cost, energy, and material consumption, both in manufacturing and in product and process development

Contact

Dr. Lukas Kertsch Forming Processes Business unit Manufacturing Processes Tel. +49 761 5142-479 Iukas.kertsch@iwm.fraunhofer.de

Dr. Maksim Zapara Team leader Forging Business unit Manufacturing Processes Tel. +49 761 5142-352 maksim.zapara@iwm.fraunhofer.de

