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Introduction and Motivation

mailto:christina.schenk@imdea.org


Christina Schenk (christina.schenk@imdea.org), ACBICI – A Library for the Calibration of Complex and Expensive Models, 04/09/2024

Background: Modeling
Models
...the sciences do not try to explain, they hardly even try to interpret, they mainly 
make models. By a model is meant a mathematical construct which, with the addition 
of certain verbal interpretations, describes observed phenomena.

- John von Neumann (1903-1957)

• Many models exist for every single phenomenon

• Predictions are as good as the model

• Models are as good as their calibration

• Calibrations are as good as the data
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Background: Calibration
Calibration
The process of finding optimal values for the parameters in a model that make the 
predictions of the latter as close as possible to physical events.

But optimal in which sense?
• Not too difficult or costly to be estimated -> fast
• Yield a model that accurately reproduces calibration data -> accurate
• That also predicts behavior for left-out experimental data -> uncertainty 

quantification
• That yield a robust model -> uncertainty quantification
• That they reflect expected behavior/values -> uncertainty quantification
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Standard Least-Squares Calibration
Pros and cons
• Simple 
• Solution depends on regularization parameter
• Local minima?
• How sure are we and Sensitivity? -> can give confidence intervals but 

often very wide
• What is the effect of experimental errors? -> Assumed to be Gaussian

Advanced Bayesian Calibration (ACBICI) as a “better” 
way of calibrating any model 
• Fast predictions via surrogate for expensive models
• Aleatoric (data, statistical) and epistemic (model, 

systematic) uncertainty quantification
• Estimation of experimental errors

Base approach not new in 
statistics community but first 
Python library with additional 
features
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Motivation

Ø Motivation: Carbon footprint of some materials, 
e.g. steel production with 20-25% of industrial 
CO2 emissions1

Ø Need: Accurate and fast predictions
Ø Challenges: Costly experiments, small data sets, 

computationally expensive models, lots of 
uncertainty

Ø Objectives:
ü Better/faster predictions
ü uncertainty quantification

1. Clean Steel Partnership, Strategic Research and Innovation Agenda (SRIA) 2021

[8billiontrees.com]
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Modeling Steel Creep Behavior
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K Drag stress in Norton-Hoff law (MPa)
n Viscosity exponent for Norton-Hoff law
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Norton-Hoff law

Elasto-visco-plastic model (Norton  type  +  damage)2

Load: 180MPa

Modified slide from original 
provided by Fan Chen and Anne 
Marie Habraken (Uliège)

Here: neglect III stage/damage

“Creep is a phenomenon of slow plastic 
deformation (elongation) of a metal at high 
temperature under a constant load.” 
- Dr. Dmitri Kopeliovich

Here to-be- 
estimated 

parameters
2. H. Morch (Uliège, 2022): Thermomechanical modelling of the creep-fatigue behaviour 
and damage of Nickel-alloy receiver tubes used in Concentrated Solar Power plants.
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Bayesian Calibration
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Bayesian Calibration3

3. Kennedy, M.; O’Hagan, A. Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2001, 
63, 425–464.

• 4 cases: 1) no discrepancy error and inexpensive model, 2) no discrepancy error and expensive model, 3) 
discrepancy error and inexpensive model, 4) discrepancy error and expensive model à Here: 4)

Data:
• Experimental:

• Synthetic:

Gaussian 
Process (GP) 
Surrogates 

(for discrepancy 
error and model)

𝑥
𝑡

Bayesian 
formulation: 
likelihood, 

priors, Bayes’ 
theorem & 

MCMC

Posterior:
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(
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And Priors for 𝜃, 𝜒,𝜎

𝜃 physical model parameters
𝜒 GP hyperparameters
𝜎 experimental error hyperparameter
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Output = Simulator + discrepancy + exp. error

Goals: 
• Surrogate for 

expensive FE model 
(FEMo)

• Estimate FEMo 
parameters

• Uncertainty 
quantification

• Predict creep strain
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Results
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Data:
• 8 experimental data points4 
• 200 random synthetic data 

points from FE simulations 
(Lagamine from Uliege*)

Uncertainty:
• Uncertainty (aleatoric and 

epistemic)
• Uncertainty (with quantified 

model discrepancy)

4. Schemmel (2003): Beschreibung des Verformungs-, Festigkeits- und Versagensverhaltens von Komponenten im 
Kriechbereich unter instationärer Beanspruchung mit einem elastisch-viskoplastischen Werkstoffmodell, PhD thesis
5. Foreman-Mackey, Goodman, Weare (2010): emcee: The MCMC Hammer, arXiv:1202.3665

.

* Fan Chen, Carlos Rojas, Anne 
Marie Habraken (Uliège)

Bayesian Calibration with Discrepancy 
Estimation100,000 emcee5 samples
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Distributions with Discrepancy 
Estimation

• Q, b, K, n physical model parameters
• 𝛽., 𝛽/, 𝜆., 𝛽1 , 𝜆1,GP hyperparameters
• 𝜎 experimental error hyperparameter

100,000 emcee samples
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Conclusions
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Conclusions
ü Bayesian calibration has many advantages over standard least-squares 

calibration:
ü Uncertainty quantification (model and data)
ü Distributions of the parameters -> sensitivities
ü Estimation of experimental error
ü Surrogate models for faster predictions
ü Option of using priors

ü ACBICI as first python library with all these features
ü ACBICI has been successfully applied for different types of models from 

creep (here) to cell calibration
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Outlook

Outlook:
Ø Creep: 

Ø Estimate parameters of all creep stages (including damage)
Ø Include fracture time prediction
Ø Estimation for different loads
Ø Estimation for microscopic model

Ø ACBICI: More models/applications and enhancements
Ø …
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More information
• https://aid4greenest.eu
• https://www.linkedin.com/company/aid4greenest-project/
• http://www.youtube.com/@AID4GREENESTOfficialAccount
• AI guided microstructure exploration. Building database and looking for 

contributors: https://microstructuredb.com
• About my work:

THANK YOU!
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